Coloring digraphs with forbidden cycles
نویسندگان
چکیده
Let k and r be two integers with k ≥ 2 and k ≥ r ≥ 1. In this paper we show that (1) if a strongly connected digraph D contains no directed cycle of length 1 modulo k, then D is k-colorable; and (2) if a digraph D contains no directed cycle of length r modulo k, then D can be vertex-colored with k colors so that each color class induces an acyclic subdigraph in D. The first result gives an affirmative answer to a question posed by Tuza in 1992, and the second implies the following strong form of a conjecture of Diwan, Kenkre and Vishwanathan: If an undirected graph G contains no cycle of length r modulo k, then G is k-colorable if r ̸= 2 and (k+1)-colorable otherwise. Our results also strengthen several classical theorems on graph coloring proved by Bondy, Erdős and Hajnal, Gallai and Roy, Gyárfás, etc. ∗Supported in part by the National Science Foundation of China under grant 11101193 and the Natural Science Foundation of Yunnan Province of China under grant 2011FZ065. †Corresponding author. E-mail: [email protected]. Supported in part by the AMS-Simons travel grant. ‡Supported in part by the Research Grants Council of Hong Kong.
منابع مشابه
NP by Means of Lifts and Shadows
We show that every NP problem is polynomially equivalent to a simple combinatorial problem: the membership problem for a special class of digraphs. These classes are defined by means of shadows (projections) and by finitely many forbidden colored (lifted) subgraphs. Our characterization is motivated by the analysis of syntactical subclasses with the full computational power of NP, which were fi...
متن کاملThe Dichotomy of Minimum Cost Homomorphism Problems for Digraphs
The minimum cost homomorphism problem has arisen as a natural and useful optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended MinMax ordering is polynomial time solv...
متن کاملLightness of digraphs in surfaces and directed game chromatic number
The lightness of a digraph is the minimum arc value, where the value of an arc is the maximum of the in-degrees of its terminal vertices. We determine upper bounds for the lightness of simple digraphs with minimum in-degree at least 1 (resp., graphs with minimum degree at least 2) and a given girth k, and without 4-cycles, which can be embedded in a surface S. (Graphs are considered as digraphs...
متن کاملGallai's Theorem for List Coloring of Digraphs
A classical theorem of Gallai states that in every graph that is critical for k-colorings, the vertices of degree k − 1 induce a tree-like graph whose blocks are either complete graphs or cycles of odd length. We provide a generalization to colorings and list colorings of digraphs, where some new phenomena arise. In particular, the problem of list coloring digraphs with the lists at each vertex...
متن کاملSpace complexity of list H-coloring revisited: the case of oriented trees
Digraphs H for which the list homomorphism problem with template H (LHOM(H)) is in logspace (L) was characterized by Egri et al. (SODA 2014): LHOM(H) is in L if and only if H does not contain a circular N. Undirected graphs for which LHOM(H) is in L can be characterized in terms forbidden induced subgraphs, and also via a simple inductive construction (Egri et al., STACS 2010). As a consequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 115 شماره
صفحات -
تاریخ انتشار 2015